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Gaussian Density Function

• MultiVariate Normal (MVN) Probability Density Function (PDF)

Introduction



Visualization of a 2D Gaussian Density

Based on spectral decomposition of the covariance matrix

Introduction



Maximum Likelihood Estimate for Parameters

Reminder for reading:

To maximize a function f(), we solve f’(x) = 0 for the value of x

Introduction



Gaussian Functions Fitted to Data

Introduction



Maximum Entropy Interpretation of Gaussian

• The multivariate Gaussian is the distribution with 
maximum entropy, subject to the constraints that it 
has a specified mean and covariance
• Maximum entropy means fewer assumptions

Introduction



Gaussian Discriminant Analysis

• A discriminant is a function that can be used to distinguish between 
members of different classes

• Gaussian discriminant analysis uses the Gaussian distribution for the 
class conditional density function

Gaussian Discriminant Analysis



Quadratic Discriminant Analysis (QDA)

• Called quadratic because it uses squared terms

• The decision boundary may not be linear [may not be a line in 2-
dimensional space (or a hyperplane in n-dimensional space)]

Gaussian Discriminant Analysis



Examples of QDA Decision Boundaries

Gaussian Discriminant Analysis



Linear Discriminant Analysis (LDA)

• The same model as QDA, except all classes use the same covariance 
matrix

• The decision boundary is linear: the quadratic term cancels out 
because it becomes independent of the class

• Note: there are two separate expansions for the LDA acronym
• Linear Discriminant Analysis is used for classification

• Latent Dirichlet Allocation is used for topic modeling (for text)

Gaussian Discriminant Analysis



Linear Discriminant Analysis

“Softmax” function

Gaussian Discriminant Analysis



Softmax Distribution Note

When normalized by “temperature”, a “winner” emerges as 
temperature is reduced

S ൗ𝜂 𝑇

𝑇 is a constant called the temperature
റ𝜂 = 3, 0, 1

Gaussian Discriminant Analysis



Examples of LDA Decision Boundaries

Gaussian Discriminant Analysis



The Geometry of 2 Class LDA

Gaussian Discriminant Analysis



Strategies to Avoid Overfitting

• Use a diagonal covariance matrix for each class [naïve Bayes]

• Use the same covariance matrix for all classes [LDA]

• Use a full covariance matrix, but impose a prior and then integrate it 
out [analogous to Bayesian naïve Bayes]

• Fit the covariance matrix using MAP estimation

• Project the data to a lower-dimension subspace and fit the Gaussians 
there

Gaussian Discriminant Analysis



Regularized LDA

• MAP estimation of the covariance matrix

• A larger value of lambda means reduced covariance (off diagonal 
entries shifting towards zero)

Gaussian Discriminant Analysis



Diagonal LDA

A diagonal covariance matrix is used with pooled empirical variance

Gaussian Discriminant Analysis



Nearest Neighbor Shrunken Centroids Classifier

For feature ‘j’: ClassSpecificMean = GlobalMean + ClassSpecificOffset
Ignore features where ClassSpecificOffset is always zero

SBRCT: Small Blue Round Cell Tumor data
• 2,308 gene expression values
• 4 classes
• 63 training examples
• 20 testing examples

Gaussian Discriminant Analysis



SRBCT Centroids [Gene Expression Values]

Gray: ClassSpecificMean
Blue: ClassSpecificOffset

Gaussian Discriminant Analysis



Marginals and Posterior Conditionals

Inference

Reminder:
The variables on this page
are vectors and matrices.

Example:
For posterior conditional,
we may use observed
variables to estimate
the density for unobserved
variables.



2D Example: Marginals and Posterior Conditionals

Inference



2D Example Visualized

Marginal for x1

Inference

Centered at (0, 0)
Correlation coefficient is 0.8

Posterior for x1

conditioned on x2



Inference: Interpolating Noise-Free Data

Smoothed estimates based on second order differencing.

Inference



Example: Interpolating Noise Free Data

Larger emphasis on prior Smaller emphasis on likelihood

Noise free: we believe the sensors are accurate, so the line goes through the observed values.
Picture shows interval estimates for x2 given a value for x1 (larger as we move away from observed values).

Inference



Inference: Data Imputation

Imputing missing values, based on parameter estimates for observed 
data

Inference

Another example where we’re making use of a conditional density;
i.e. the density for the missing values given the observed values.
[20 dimensions!]



Inference About A Noisy 1D Observation

We say that a distribution with fatter tails is less precise.
On the left, we see a more precise prior pulls the posterior toward it.
On the right, we see a less precise prior has a reduced effect on the posterior.

Linear Gaussian Systems



Inference About Noisy 2D Observations

The prior (in the center) has a mean at (0, 0) and a variance of 0.1 for each dimension.
After only 10 observations, the posterior is more closely aligned with the data.
The “true” location is located at (0.5, 0.5).

Linear Gaussian Systems



Sensor Fusion

Linear Gaussian Systems

The contours reflect our uncertainty.
On the left, we are equally uncertain about the green and red sensors, so our posterior (black) is equidistant.
In the middle, we have more uncertainty about the red sensor, so our posterior is closer to the green.
On the right, we have more uncertainty about the first dimension for the red sensor and the second dimension for the green.



Interpolation with Noisy Data

Linear Gaussian Systems

Again, the stronger prior appears on the left.
The line no longer passes through all observations,
reflecting our uncertainty about the observations.



Wishart Distribution for the Covariance Matrix

The Wishart Distribution

The Wishart distribution is a generalization of the gamma distribution.
It’s used to model uncertainty about the covariance matrix parameter.



Covariance Matrix Estimation

Recall that the eigenvalue measures variation.
On the right, with fewer observations, we see the MAP estimate is better aligned to the true values than the MLE.
On the left, with more observations, we see the MLE is moving closer to the true values.

Inferring Parameters



Sequential Updating of the Posterior for Variance

Inferring Parameters

As we accumulate more evidence, our estimate moves closer to the true variance



Effect of Prior on Parameter Estimates
Based on NIX: Normal Inverse Chi-Squared Distribution

Inferring Parameters

We’re estimating the mean and variance for a one-dimensional Gaussian.  On the left, our priors have less emphasis.  
In the middle, we’re emphasizing our prior for the mean.  On the right, we’re emphasizing our prior for the variance.



Multi-Sensor Fusion Example

Plug-in Approximation:
Emphasizing the more reliable sensor

Exact Posterior:
Reflecting uncertainty about
which sensor is correct

Inferring Parameters



Natural Language Processing



Natural Language Processing

• Representation

• Latent Dirichlet Allocation



Applications

• Speech recognition

• Language translation

• Information retrieval

• Text classification (e.g. sentiment analysis)

• … anything where human language is an input …



Preprocessing Steps for Text

• Options
• Convert text to lower-case
• Remove stop words (e.g. “a”, “an”, “the”, …)
• Stem tokens (e.g. remove suffixes like “ing”)

• Break up text into tokens (e.g. based on whitespace and punctuation)

• Derive ngrams (e.g. bigrams are pairs of adjacent words)

• Derive inverse document frequency values for training corpus

• Derive term-frequency inverse document frequency vectors

idf produces larger weights for terms which appear in fewer documents
and smaller weights for terms which appear in more documents



Downloading the Natural Language ToolKit

import nltk

nltk.download()

[click “book” then “Download”]



Text Classification Example

• A corpus (set) of Reuters news articles is used to produce a text 
classification model

• The vectors are in sparse format, with one line per article
• Each line begins with a class label: “1” for positive class observations and 

“-1” for negative class observations

• The remaining entries consist of non-zero index:TFIDF value pairs for terms 
found in the news article



Topic Modeling: Latent Dirichlet Allocation

[the number of words for a document]

[the topic probabilities for a document]



LDA: Probability of Observing Corpus

LDA is an unsupervised learning method.

Our goal is to learn about groups of related terms.

http://jmlr.org/papers/v3/blei03a.html

The likelihood of the corpus can be estimated using our model:

http://jmlr.org/papers/v3/blei03a.html


Pseudocode for LDA Training With Gibbs Sampling



Installing LDA

pip install lda –user

See the python notebook for the examples covered in class


