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Administrative Stuff

* Pre-requisites: calculus, linear algebra
e Attendance: must attend 80% of classes

 On-site versus online: on-site students can do one online session
[licensing]

e Homework: posted by Fri @ 11:59pm; due the next Fri @ 11:59pm
* Grading: must have 80% of homework graded as pass
» External Course Website: http://cross-entropy.net/ML310



http://cross-entropy.net/ML310

Course Outline

e Apr7:

) May 12
o Chapter 1: Introduction o Chapter 6: Frequentist statistics
o Python and scikit-learn o Graphical models

= Interfaces ) = Bayesian networks
®* Model selection = Conditional random fields

e Aprl4

- May 19
o Chapter 2: Probability o Chapter 7: Linear regression

o Spectral clustering o Semi-supervised learning
= Spectral representation = Self-training

= Clustering = Co-training
= Label propagation
e Apr2l
o Chapter 3: Generative models for discrete data
o Recommendation systems
= Collaborative filtering
= Content filtering

o May 26
o Chapter 8: Logistic regression
o Active learning
= Exploration
= Exploitation

e Apr28
o Chapter 4: Gaussian models
o Natural language processing
= Bag of words
=  Topic modeling

e Jun2
o Chapter 16: Adaptive basis function models
o Online learning
=  Online gradient descent
= Bandits

e May5
o Chapter 5: Bayesian statistics
o Imbalanced classification
*  Weights
=  Sampling

Jun 9
o Chapter 28: Deep learning
o Introduction to deep learning
=  Multi-layer perceptron
= Representation learning



External Course Website
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Welcome to cross-entropy.net!

This site contains information about machine learning and related topics. It gets its name from the cross entropy function.
Cross entropy is often used as a loss function for evaluating pattern recognition models, measuring the dissimilarity between
observed classification labels and predicted probabilities.

The current contents include ...
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External Course Website
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Welcome to the auxillary page for the Advanced Machine Learning course!

Text: Machine Learning: A Probabilistic Perspective, by Kevin Murphy. This text has excellent breadth, providing a unitied
framework encompassing machine learning, graphical models, and Bayesian statistics.

The current course materials include ...

Syllabus |

Download Link for Anaconda Python 2.7 (which includes scikit-learn)
Abbreviations List
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Facts1017?

Most classifiers assume that the input vector x has a fixed size. A common way to represent
variable-length documents in feature-vector format is to use a bag of words representation.
This is explained in detail in Section 3.4.4.], but the basic idea is to define x;; = 1 iff word j
occurs in document i. If we apply this transformation to every document in our data set, we get

a binary document x word
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Machine Learning, A Probabilistic
Perspective: Computer science,
Artificial ...

By Cram101 Textbook Reviews

About this book
» My library
» My History

Books on Google Play

Terms of Service

Pages displayed by permission of Cram101

Textbook Reviews

matrix: see Figure 1.2 for an example. Essentially the

Co-occurrence matrix:

A co-occurrence matrix or co-occurrence distribution is a matrix or distribution that is defined over
an image to be the distribution of co-occurring values at a given offset. Mathematically, a co-
occurrence matrix C is defined over an n x m image |, parameterized by an offset (Ax,Ay), as:

where i and j are the image intensity values of the image, p and q are the spatial positions in the
image | and the offset (Ax,Ay) depends on the direction used 9 and the distance at which the
matrix is computed d. The 'value' of the image originally referred to the grayscale value of the
specified pixel, but could be anything, from a binary on/off value to 32-bit color and beyond.




Probability Modeling Tool Kit (PMTK)

e https://www.mathworks.com/store/ [click “Student”?]
e https://github.com/probml/pmtk3 [click “Download Zip”]

Command Window

New to MATLAB? See resources for Getting Started. X
Home License -- for personal use only. Not for government,

academic, research, commercial, or other organizational use.

>> cd /projects/pmtk3-master
>>» initPmtk3

initializing pmtk3

welcome to pmtk3

>> linregPolyVsDegree

Jx >> |

degree 1
15 — L

10

See Fig 1.7(a)


https://www.mathworks.com/store/
https://github.com/probml/pmtk3

We interrupt our regularly scheduled broadcast for this important ...

Public Service Announcement

w

T THINK WE SHOULD MAYRE YOURE RIGHT.
GIVE IT ANCOTHER SHOT. [ T KNEW DATA WouD CONVINCE YOU.
WE LD BREAK, NG, T JUST THINK. T (AN DO
\ 0 AT ow | | | OUR REATIONSHP BENER THAN SOMEONE WHO
©PROVE IT DOESN'T LABELHER AXES,

K08 T

https://xkcd.com/833/

Always label your axes!



https://xkcd.com/833/

Agenda

* Machine learning: what and why?

e Supervised learning

* Unsupervised learning

* Some basic concepts in machine learning
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Machine Learning Definition

The process of using data to create a model, mapping one or more
inputs to one or more outputs.

Supervised Learning Example:

~ ~ C
D = {(xi,yi)}izs v € {01} § = f(x) = argmax p(y = c|x, D)

Q: What'’s better than one way to write the probability estimate?
A: Four ways to write it! ©

p(ylx,D,M) = p(yx,D) = pyx) = plyilx,0)
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Types of Machine Learning

* Supervised Learning
* Regression
* Classification

* Unsupervised Learning
* Clustering
e Matrix Completion (e.g. Collaborative Filtering and Market Basket Analysis)

* Reinforcement Learning
* Games



Supervised Learning

Example Classification Task




Supervised Learning

Example Representation

N cases

4

D features (attributes)

Label

Color Shape Size (cm)
Blue Square 10

Red Ellipse 2.4

Red Ellipse 20.7




Supervised Learning

Document Classification

documents
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Supervised Learning

Flower Classification

Setosa Versicolor Virginica




Supervised Learning

Iris: Data Visualization
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Supervised Learning

Handwriting Recognition

true class = true class = true class = 1 true class =7 true class = 2 true class = 1
true class = true class = true class = 1 true class =0 true class = 4 true class = 1
true class = true class = true class = 5 true clas

true class =5
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Supervised Learning

Face Detection




Supervised Learning

Linear versus Polynomial Regression

15—

10




Unsupervised Learning

Discovering Clusters
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whereas unsupervised learning is unconditional density estimation”

“supervised learning is conditional density estimation,



Unsupervised Learning

Discovering Latent Factors




Unsupervised Learning

Principal Components for Faces

principal basis 2




Unsupervised Learning

w

Discovering Graph Structure
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Unsupervised Learning

Image Inpainting




Unsupervised Learning

Collaborative Filtering
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Basic Concepts

w

Non-Parametric versus Parametric Model

Is the number of parameters fixed?

* “Yes” implies the model is parametric
* linear regression
* logistic regression

* “No” implies the model is non-parametric
* k-nearest neighbor
* decision tree



Basic Concepts

Non-Parametric: Nearest Neighbor

1 if e is true

1
ply=cxD.K)=— 3  Iyi=c) H(e):{ 0 if e is false



Basic Concepts

k Nearest Neighbor: k=10

train p(y=1|data,K=10)
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Basic Concepts

Curse of Dimensionality
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ep(f) = fH/P



Basic Concepts

Parametric: Linear Regression

PDF




Basic Concepts

Parametric: Polynomial Regression

degree 14 degree 20
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p(y|x,0) = N (ylw" ¢(x), 0°) b(x) = [1,z,22,...,29



Basic Concepts
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Parametric: Logistic Regression
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Basic Concepts

Overfitting

predicted label, K=1 predicted label, K=5
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Basic Concepts

Model Selection
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No Free Lunch Theorem

* “All models are wrong, but some are useful” — George Box

* Much of machine learning is concerned with devising different
models, and different algorithms to fit them

* There is no single best model that works optimally for all kinds of
problems



ML v Statistics [Tibshirani]

supervised learning

regression/classification

unsupervised learning

density estimation, clustering

Glossary
Machine learning Statistics
network, graphs model
weights parameters
learning fitting
generalization test set performance

large grant = $1,000,000

large grant= $50,000

nice place to have a meeting:

Snowbird, Utah, French Alps

nice place to have a meeting:

Las Vegas in August
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https://twitter.com/ML Hipster

't . MLHipster @ML_Hipster - 31 Aug 2014
i ' Using weighted majority to evaluate MOOCs that teach sequential
' prediction. It's online learning of online learning for online learning.

Ask lots of questions! Keep your sense of humor!


https://twitter.com/ML_Hipster

